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The thermodynamic mixing properties of a binary �AxB1−x�R solid solution are evaluated from the enthalpies
of supercell structures Am−2B2Rm and Bm−2A2Rm, where m is the number of the exchangeable sites in the
supercell. The excess enthalpies of these structures are converted into concentration-dependent pairwise effec-
tive cluster interactions Jn, i.e., the enthalpies of the intracrystalline reactions AA+BB�2AB acting at the
n-neighbor distance within the supercell. The pairwise interactions calculated in this way for all possible

distances within 3�3�1 supercells of R3̄c calcite and magnesite �m=54� are combined to form an effective
Ising-type Hamiltonian from which temperature-dependent enthalpies, entropies, and free energies of mixing
are evaluated with the Monte Carlo method. The calculated phase diagram with two miscibility gaps separated

by a field of stability of the R3̄ dolomite phase is in good agreement with available experimental data, thereby
showing that the existence of the intermediate ordered compound can be predicted from the analysis of the
supercell structures whose compositions approach the diluted limits.
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I. INTRODUCTION

Modern approaches to modeling of solid solutions rely on
the assumption that the thermodynamic effects of mixing and
ordering can be predicted by studying the excess enthalpies
of supercell structures with differently arranged exchange-
able atoms. To reflect the most important ordering interac-
tions, the supercell should be sufficiently large. This brings
about the necessity of permuting a huge number of possible
configurational states. Since only a limited set of such states
can practically be tested, the simulation procedures employ
interpolation methods which permit the excess enthalpy of a
supercell with any configuration of the exchangeable atoms
to be expressed through the enthalpies of a few explicitly
sampled structures. In the method of the cluster expansion1–3

this is achieved via the calculation of the effective cluster
interactions �ECIs�—the locally defined energetic param-
eters, which after scaling by occurrence frequencies of the
clusters give the value of the excess enthalpy. The ECIs can
be calculated from the enthalpies of the sampled structures
by solving a system of linear equations, provided that these
structures correspond to different arrangements of the ex-
changeable atoms within the supercell.

The next important task of the simulation procedure is to
extrapolate the excess properties of the supercell to a hyper-
cell, i.e., a supercell whose properties approach that of an
infinitely large system. This is achieved by expanding the
supercell size so that several thousands of the exchangeable
sites are included. The important condition for this extrapo-
lation is that the ECIs converge fast with the increase in the
separation between the points included in the clusters. This
ensures that the hypercell has the same ground states as the

supercell. Since the enthalpy of any possible configuration
within the hypercell can be quickly calculated as a function
of the ECIs and the cluster occurrence frequencies, the ther-
mal averages of any relevant thermodynamic function can be
obtained with a Monte Carlo algorithm.

In recent years this methodology has been applied to a
large number of solid solutions, such as alloys, minerals, and
ceramics. Different symmetries and chemical compositions
of the studied materials dictated the use of different strate-
gies of selecting the structures within the supercell which are
to be included in the cluster expansion. In the studies of
alloys and other solid solutions which crystallize in high-
symmetry structures, such as fcc or bcc,1,4–12 the sampled
structures were often selected in analogy with ordered phases
which typically appear as ground states in experimentally
studied alloys. Using these structures is very convenient be-
cause true ground states are likely to be included in the basis
set and thus the model is bound to be correct at least in the
low-temperature limit. High symmetry of the basis structures
and their relatively small size unit cells make the task of the
enthalpy calculation tractable with ab initio methods. The
development of the ATAT package13 has permitted optimiza-
tion of the selection of the basic clusters so that the best
performance of the cluster expansion is achieved with mini-
mum sizes of supercell structures.

On the other hand, in studies of minerals one is generally
confronted with low-symmetry structures. The structural
complexity and diversity of these materials prohibits a
straightforward enumeration of possible ordered states. In
contrast to alloys, where the unit cell is composed of the
exchangeable atoms solely, minerals often contain extra “in-
active” elements, e.g., O, Si, Al, and C, which increase the
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system size. Typically one is concerned with ordering and
mixing of cations of different metals which rest within an
“inert” matrix built by anion complexes such as SiO4

4−,
AlO6

9−, or CO3
2−. The low symmetry and the chemical com-

plexity typically imply a large unit cell, where the mixing
occurs within a specific sublattice �Wyckoff position�. For
example, in grossular pyrope garnet, Ca3Al2Si3O12-
Mg3Al2Si3O12, Ca and Mg are mixed over 24 out of the total
number of 160 sites.14 In such a case the approach based on
ordered structures offers little advantage because the order-
ing affects just a small part of the structure and cannot sig-
nificantly reduce the supercell size. At the same time, when
interactions between exchangeable atoms in minerals are me-
diated by the “extra” elements, the role of many-body cluster
interactions is likely to be small. The majority of the recent
studies concerned with order/disorder and mixing phenom-
ena in minerals14–24 have therefore considered pairwise ECIs
only. Since in large supercells a large number of different
pair ECIs can be included in the expansion, it was usually
possible to achieve reasonably accurate fits to the excess en-
thalpies of the sampled structures. Most of the above-
mentioned studies were based on force-field models, while
the sets of the basis structures were generated randomly. A
typical study considered a few hundred structures of different
compositions within a supercell containing 20–40 exchange-
able sites.

This approach has two main drawbacks. First, the random
choice of the basis structures introduces arbitrariness, as a
different set of randomly selected structures will result in a
different set of ECIs. Second, the use of hundreds of such
structures does not allow consideration of ab initio calcula-
tions as a plausible alternative.

To overcome the difficulty of applying first-principles cal-
culations in low-symmetry cases, here we employ a fully
deterministic method which is based on the notion that the
pairwise interactions in diluted limits can be evaluated from
the excess enthalpies of supercell structures prepared from
pure end members by substituting pairs of the exchangeable
atoms with atoms of the other sort. The number of the re-
quired structures is limited to the number of crystallographi-
cally different pairs within the supercell. This method has
been widely used in materials science to simulate defect-
defect interactions in metals.25–27 Here we show that it can be
applied to simulate mixing and ordering in an isostructural
solid solution, provided that certain conditions are fulfilled.

Although future applications will very likely be based on
first-principles calculations, here we illustrate the method us-
ing a force-field model28 which has been already successfully
applied to simulate phase relations in the rhombohedral
carbonates.23 It has been shown23 that the excess energies of
various supercell structures in the calcite-magnesite system
calculated with the potentials of Austen et al.28 correlate lin-
early with the excess energies of the same structures calcu-
lated with a density-functional theory �DFT� based model.10

The choice in favor of the force-field model allows compari-
son of the results with those obtained with the random sam-
pling strategy.23

II. EXPANSION OF THE EXCESS ENTHALPY

The configurational energy of an �A,B�R solid solution
can be associated with interactions between the exchange-

able �A,B� atoms only, while the interactions of A and B with
the remainder of the structure R cancel out when the energy
of the mechanical mixture of AR and BR end members is
subtracted from the energy of the solid solution. Assuming
pairwise additivity and extending the summation up to the
nth distance within the supercell, the excess enthalpy can be
written as

�H = Hss − Hmm =
1

2
N�

n

Zn��
i,j

Pij�n�Hij�n� − �
i

PiHii�n�� ,

�1�

where Hss is the enthalpy of a solid solution phase with the
composition xi= Pi, Hmm is the enthalpy of the mechanical
mixture of the end members, N is the number of the ex-
changeable sites in the supercell, Pij�n� is the probability of
finding an ij pair at the nth distance in the supercell, Hij�n� is
the interaction energy between atoms i and j, and Zn is the
coordination number �the number of neighbors at the nth
distance�. The enthalpy of the mechanical mixture is repre-
sented with AA and BB pairs only which occur with the
probabilities �fractions� PA and PB, respectively. Noting that
the point probabilities Pi can be written as sums of the pair
probabilities, PA= PAB�n�+ PAA�n� and PB= PBA�n�+ PBB�n�,
Eq. �1� can be rewritten as follows:

�H =
1

2
N�

n

ZnPAB�n�Jn, �2�

where

Jn = HAB�n� + HBA�n� − HAA�n� − HBB�n� �3�

is the effective pair interaction at the distance n. It is conve-
nient to rewrite Eq. �2� in the form

�H = �
n

fAB�n�Jn, �4�

where fAB�n� is one half of the number of AB pairs at the nth
distance within the supercell.

This formula has been employed extensively in many re-
cent studies of order/disorder and mixing phenomena in
minerals.14–24,29,30 The J’s were calculated with the least-
squares method from the static lattice energies and fAB�n�
numbers of a large set of supercell structures. Equation �4�
was subsequently used to calculate temperature-dependent
mixing properties with the Monte Carlo method. It has been
recognized, however, that since the numbers of AB pairs are
symmetric with respect to swapping A and B symbols, the
predicted excess enthalpy is always a symmetric function
with respect to x=0.5 as long as the J’s are composition
independent. Several studies20,21,23,24 have shown that the ac-
curacy of Eq. �4� for fitting the static lattice energies can be
significantly improved by adding to Eq. �4� a configuration-
independent term,

�H0 = x1x2�x1A1 + x2A2� , �5�

where xi’s are the mole fractions of the end members 1 and 2
and Ai’s are parameters. The addition of this term is sup-
ported by the analysis of Ferreira et al.,31 who showed that in
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solid solutions with size mismatch, �H0 can be associated
with the global strain that is caused by a homogeneous de-
formation of the lattices of the end members due to the mix-
ing.

In a recent study of the calcite-magnesite system23 the J
and A parameters were determined by a least-squares method
from the energies of about 800 randomly generated supercell
structures. Although the experimental phase relations were
successfully reproduced, the model23 had several drawbacks.
First, the set of the supercell structures was prepared by ran-
dom swaps starting from the ordered compounds with a
dolomite-type ordering pattern. This choice implied prior
knowledge of the type of ordering in the system. Second, the
A’s and the J’s were determined from the results of the least-
squares fit. Within this procedure the separation of the
configuration-dependent and -independent parts of the excess
enthalpy cannot be done accurately because the symmetric
part of the global strain overlaps with the J’s expansion and
thus the Ai parameters correlate severely with the values of
the J’s. The approach presented below avoids these inconve-
niences.

III. DOUBLE-DEFECT METHOD

It is easy to design a computational experiment which
allows evaluation of the effective pair interaction at a given
distance in the limit of infinite dilution. Let us consider AB,
BA, AA, and BB pairs placed at the nth distance within the
matrix of the pure “A” end member. In this case the differ-
ences in the enthalpies of the supercells of the same size
containing AB, BA, AA, and BB pairs will be the same as
the differences between HAB�n�, HBA�n�, HAA�n�, and HBB�n�
terms of Eq. �3�. One can also note that the A atoms, which
belong to the pairs, will be indistinguishable from the A at-
oms of the matrix. Hence, the AA pair will disappear, while
the AB and BA pairs will reduce to single B-type defects

within the A matrix. This means that in the diluted limit of
the end member A, the J can be computed as the difference
in total energies of sufficiently large supercells with single,
double, and no B defects. Rescaling the enthalpies relative to
the enthalpy of the supercell of pure A end member, one
obtains

JA�n� = 2�HB − �HBB�n�, �6�

where JA�n� is the pair ECI at the distance n in the limit of
pure A, and �HB and �HBB�n� are the excess enthalpies of
the supercells with single B and double BB defects, respec-
tively. Similarly, in the B limit

JB�n� = 2�HA − �HAA�n�. �7�

Equation �6� has been used to calculate interactions be-
tween impurity pairs in various metals and to predict solu-
bility limits for various alloying components in metals.25–27

Here we investigate the possibility of using this method to
predict thermodynamic mixing behavior in a concentrated

solid solution. Let us consider a 3�3�1 supercell of R3̄c
calcite �a=14.964 Å, c=17.061 Å� containing 54 ex-
changeable sites. The first two configurations are constructed
from the pure end members by substituting one Ca in calcite
with Mg and one Mg in magnesite with Ca. The other con-
figurations are generated by adding a second defect at all
possible distances around the first defect. This results in two
series of configurations with Mg-Mg and Ca-Ca defects each
comprising 11 structures, respectively. The enthalpies of the
double-defect structures vary with the distance between the
impurity atoms. Each of these structures is characterized
with a unique set of numbers of AB �Ca-Mg� pairs. These
numbers are given in Table I. An important feature of Table
I is that nearly all numbers of AB pairs of the configurations
with the double defects are equal to twice the corresponding
numbers of the configurations with the single defect. This is

TABLE I. The numbers of Ca-Mg �AB� pairs, fAB�n�, and the degeneracies Dn of the structures with single and double defects in the
calcite-magnesite solid solution: 3�3�1 supercell. Ln �Å� is the distance between the defects within the supercell.

n Ln Ndef :Nhost fAB�n� Dn

Single defects

1:53 3 3 3 3 3 6 1 3 6 6 6

Double defects

1 4.052 2:52 5 6 6 6 6 12 2 6 12 12 12 1

2 4.994 2:52 6 5 6 6 6 12 2 6 12 12 12 1

3 6.382 2:52 6 6 5 6 6 12 2 6 12 12 12 1

4 6.431 2:52 6 6 6 5 6 12 2 6 12 12 12 1

5 8.104 2:52 6 6 6 6 5 12 2 6 12 12 12 1

6 8.142 2:52 6 6 6 6 6 10 2 6 12 12 12 2

7 8.541 2:52 6 6 6 6 6 12 0 6 12 12 12 2

8 8.650 2:52 6 6 6 6 6 12 2 3 12 12 12 3

9 9.519 2:52 6 6 6 6 6 12 2 6 10 12 12 2

10 9.893 2:52 6 6 6 6 6 12 2 6 12 10 12 2

11 12.156 2:52 6 6 6 6 6 12 2 6 12 12 6 6
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so because the number of dissimilar AB pairs generated by
two defects is generally twice the number of AB’s generated
by a single defect. The only exceptions are the AB numbers
which correspond to the distances at which the double de-
fects are inserted. These “exceptional” numbers �the values
in bold� occur along the diagonal direction of Table I. Due to
the periodic boundary conditions, the insertion of a double
defect generates Dn AA or BB pairs, where Dn is the degen-
eracy factor. The degeneracy is calculated by counting the
number of symmetry-related pairs between the first defect
and all translational variants of the second defect. Thus the
exceptional AB numbers are smaller than twice the AB num-
bers of a single-defect structure by Jn times Dn. This means
that in the case of periodic boundary conditions, Eq. �6�
should be written as follows:

JA�n� = �2�HB − �HBB�n��/Dn, �8�

where Dn is the degeneracy.
The last equation and its analog for the B limit can be

now used to calculate the J’s in the calcite-magnesite system.
To calculate the enthalpies of the single- and double-defect
structures, we used the force-field model of Austen et al.28

and the program GULP.32,33 The excess enthalpies and the J’s
are given in Table II. The two sets of the J’s correspond to
the defects Mg�B� in calcite and the defects Ca�A� in mag-
nesite.

The relationship between the excess enthalpies of the
double-defect structures and the defect-defect distance is
shown in Fig. 1. The excess enthalpies converge to a value
which is close to twice the excess enthalpy of a single defect.
Consequently, the J’s converge with the defect separation to
near zero value. This is consistent with the expectation that
at a large distance the ordering interaction between two de-
fects vanishes.

The two sets of the J’s characterize the pair ECIs at two
extremes along the composition axis. The variation in the J’s
at intermediate compositions is not known. However, in a
system with size mismatch, referring to the analysis of Fer-
reira et al.,31 one expects that the excess enthalpy in the
high-temperature limit should be consistent with the sub-
regular model, so that the total excess effect could be fitted
with an equation similar to Eq. �4�. Such a behavior is con-
sistent with a linear dependence of the J’s on the composi-
tion:

Jn = xAJA�n� + xBJB�n�. �9�

Although alloy theories suggest more complex functional de-
pendences of ECIs on the composition,5,34 we think that the
simplest assumption of a linear behavior could be sufficient
in cases when the values of JA�n� and JB�n� are very similar.
This is indeed the case for the calcite-magnesite solid solu-
tion �Fig. 2�.

IV. PRACTICAL IMPLEMENTATION OF THE DDM

The derivation given above suggests that the J’s calcu-
lated with Eqs. �8� and �9� after substitution into Eq. �4�
should reproduce the excess enthalpies of the double and

single defects. In contrast to this expectation such a test
shows that the recalculated excess enthalpies differ consider-
ably from the initial ones, which have been calculated di-
rectly from the force-field model. However, we note that
when the single-defect enthalpy in Eq. �8� is allowed to de-
viate from the computed value and is treated as a fitting
parameter instead, nearly perfect agreement with the initial
enthalpies is achieved easily. Therefore, this test suggests
that the enthalpies of the double-defect structures converge
to a value, which is very close, but not exactly equal, to
twice the enthalpy of a single-defect structure. It is clear that
the enthalpies of the double-defect structures converge to the
enthalpy of a structure with two noninteracting defects. Such
a hypothetic structure should have the same composition as
the other double-defect structures, i.e., two defects per super-
cell. Equation �8� assumes that the excess enthalpy of this
structure is equal to twice the excess enthalpy of the structure
with a single defect. Although this is correct in the case of an
infinitely large supercell �Henry’s law�, practically, we are
dealing with rather small supercells, in which the excess en-
thalpy is not linearly proportional to the composition. There-
fore, Eq. �8� is slightly inaccurate. In order to achieve the
consistency, the enthalpy of the single-defect structure
should be adjusted so that twice this value gives the enthalpy
of a hypothetical structure with two noninteracting defects.
Following this idea the DDM recipe is reformulated as fol-
lows:

JA�n� = ��HBB��� − �HBB�n��/Dn, �10�

where �HBB��� is a single parameter for all the J’s corre-
sponding to defects of BB type. When the J’s are calculated
at two contrasting compositions �in the A and B limits�, two
parameters are needed. These parameters can be found by
substituting the J’s calculated with Eq. �10� into Eqs. �9� and
�4� and by fitting to the known excess enthalpies and fAB�n�
numbers of the single- and double-defect structures. The fit-
ted �HBB��� and �HAA��� values together with the corre-
sponding values of the J’s are listed in column 7 of Table II
and plotted in Fig. 2. The comparison of columns 4 and 5 of
Table II shows that the excess enthalpies of double-defect
structures can be fitted very accurately using these two ad-
justable parameters. It is important to note that Eq. �10� can
be applied not only to the excess enthalpies of double-defect
structures, but also to their absolute enthalpies. The meaning
and the value of the adjustable parameter will change accord-
ingly. Its optimized value will be then close to twice the
absolute enthalpy of a single-defect structure.

V. ENTHALPY IN THE HIGH-TEMPERATURE LIMIT

When the J’s are known, the enthalpy of mixing in the
high-temperature limit can be straightforwardly calculated
with Eq. �2�. Since the atomic distribution is purely random,
the probabilities of AB pairs in Eq. �2� can be substituted
with the product PAPB= PA�1− PA�. Since the J’s vary with
composition, the high-temperature enthalpy is asymmetric
with respect to x=0.5. This asymmetric function can be vi-
sualized as a linear interpolation between two symmetric
functions of different amplitudes which result from using
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JA�n� or JB�n� �Fig. 3�. One observes that the high-temperature
enthalpy passes nearly exactly through the excess enthalpies
of the two structures with single defects. This is not a coin-
cidence. The probability of finding an AB pair in a structure
with a single A defect is PAPB/A= PA. This holds because the
conditional probability PB/A �the probability of finding B
atom at a given distance from an A atom� is equal to 1. Since
in the diluted composition limit

PA�1 − PA� � PA, �11�

the high-temperature enthalpy is bound to pass almost ex-
actly through the excess enthalpy of the single-defect struc-

ture. Thus, as it was already shown by Sluiter and
Kawazoe,35 the high-temperature enthalpy can be predicted
from the excess enthalpies of just two single defects. The
predicted type of asymmetry with the maximum shifted to
magnesite-rich compositions is consistent with the shape of
the phase diagram of the calcite-magnesite system,36 which
shows that the miscibility gap at magnesite-rich composi-
tions is wider than the gap at calcite-rich compositions.

VI. MONTE CARLO SIMULATIONS

Fast convergence of the ECIs as a function of interatomic
separation �Fig. 2� suggests that Eq. �4� is applicable for

TABLE II. The excess enthalpies of the single- and double-defect structures and the pair ECIs in the
calcite-magnesite solid solution: 3�3�1 supercell. The enthalpy values are in eV. The fitted values are
marked with the � sign. The values in bold are the excess enthalpies of the hypothetical compounds with the
defects at an infinitely large distance.

Single defects

NB:NA �HA/B �HA/B
�

1:53 0.2217 0.2204

53:1 0.3451 0.3441

Double defects

n
Ln

�Å� NB:NA �HBB�n� �HBB�n�
� JA�n� JA�n�

�

1 4.052 2:52 0.5675 0.5663 −0.1242 −0.1219

2 4.994 2:52 0.3581 0.3574 0.0853 0.0875

3 6.382 2:52 0.4279 0.4279 0.0154 0.01770

4 6.431 2:52 0.4459 0.4457 −0.0025 −0.0002

5 8.104 2:52 0.3977 0.3981 0.0456 0.0479

6 8.142 2:52 0.3780 0.3783 0.0327 0.0338

7 8.541 2:52 0.3791 0.3812 0.0321 0.0333

8 8.650 2:52 0.4640 0.4640 −0.0069 −0.0061

9 9.519 2:52 0.4826 0.4820 −0.0196 −0.0185

10 9.893 2:52 0.4267 0.4268 0.0083 0.0095

11 12.156 2:52 0.4848 0.4838 −0.0069 −0.0065

� 2:52 0.4456 0 0

n
Ln

�Å� NB:NA �HAA�n� �HAA�n�
� JB�n� JB�n�

�

1 4.052 52:2 0.7733 0.7745 −0.0832 −0.0898

2 4.994 52:2 0.5779 0.5786 0.1123 0.1056

3 6.382 52:2 0.6670 0.6670 0.0231 0.0164

4 6.431 52:2 0.6798 0.6799 0.0104 0.0037

5 8.104 52:2 0.6470 0.6466 0.0431 0.0364

6 8.142 52:2 0.6260 0.6257 0.0320 0.0287

7 8.541 52:2 0.6735 0.6714 0.0083 0.0050

8 8.650 52:2 0.7029 0.7029 −0.0043 −0.0065

9 9.519 52:2 0.7050 0.7057 −0.0075 −0.0108

10 9.893 52:2 0.6668 0.6668 0.0116 0.0083

11 12.156 52:2 0.6972 0.6982 −0.0012 −0.0023

� 52:2 0.6835 0 0
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calculation of excess enthalpies in a much larger supercell.
Here we employ a 12�12�3 supercell which contains 2592
exchangeable atoms. The previous study23 has shown that
supercells of this size already approach the thermodynamic
limit. It has been shown that the thermodynamic averages
calculated for 12�12�3 and 16�16�4 supercells are
practically indistinguishable. Canonical Monte Carlo simula-
tions were performed with the composition-dependent J’s on
a grid of 54 compositions between calcite and magnesite and
21 temperatures between 500 and 2500 K. To achieve equi-
librium 15�109 Monte Carlo steps were used and another
15�109 steps were used to calculate averages. The results of
the simulations are shown in Fig. 4.

VII. THERMODYNAMIC INTEGRATION

The configurational free energy can be calculated from
Monte-Carlo-averaged excess enthalpies via a �
integration:37,38

�G = �G0 + �
0
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show the enthalpies predicted from Ca-Ca defects in magnesite and
Mg-Mg defects in calcite, respectively. Circles show the excess
enthalpies of the single- and double-defect structures in kJ/mol as-
suming the formula unit with one exchangeable atom. The solid line
is the interpolation using Eq. �8�.
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FIG. 4. The enthalpy of mixing as a function of temperature
from Monte Carlo simulations. The values are in kJ/mol assuming a
formula unit with one exchangeable atom.
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�G0 is the free energy of mixing of an �A,B�R solid
solution with completely random distribution of A and B
atoms, which can be calculated theoretically:

�G0 = �H0 + RT�xA ln�xA� + xB ln�xB�	 , �13�

where �H0 is the enthalpy of mixing in the limit of complete
disorder and �H� is the average enthalpy of the system in a
state with a nonequilibrium intermediate degree of chemical
disorder, �; 0���1. The state �=1 corresponds to an
equilibrated system at a given temperature, while the states
with ��1 correspond to an artificial disorder that is intro-
duced on top of the equilibrium disorder at the same tem-
perature. This artificial disorder is simulated by scaling the
J’s according to the equation Jn

�=�Jn. In our simulations, �
was gradually increased from 0 to 1 with a step size of 0.04.
The integral describes the change in free energy of a system
at a fixed temperature from the state with zero ordering en-
ergy ��=0� to its equilibrium state determined with the
nominal values of the J’s ��=1�. The free-energy isotherms
are plotted in Fig. 5. Configurational entropy isotherms were
calculated with

�S = ��H − �G�/T �14�

and are plotted in Fig. 6. The remarkable feature of the low-
temperature isotherms is the sharp minimum at x=0.5 that is
caused by dolomite-type ordering. The temperature depen-
dence of the long-range-order �LRO� parameter at x=0.5 has
been investigated with the Monte Carlo simulation �Fig. 7�.
The LRO parameter is defined as

Q = �PA� − PA��/�PA� + PA�� , �15�

where PA�= PA�1+Q� and PA�= PA�1−Q� are the probabili-
ties of finding an A �Ca� atom in the nonequivalent sublat-
tices � and � of the dolomite structure. Equation �15� cannot
be directly applied for calculating the order parameter. The
problem is that the ordering pattern fluctuates from Q to −Q
during the simulation. Thus the site occupancies calculated

over a long simulation run are equal to the concentration of
A in the Monte Carlo supercell. Therefore, the value of Q at
a given temperature was evaluated from the probability �oc-
currence frequency� of A-A pairs at the maximum separation
�25.59 Å along the c axis� permitted by 12�12�3 super-
cell. Since short-range order at such a large distance is prac-
tically absent, the probability of A-A �Ca-Ca� pairs can be
evaluated as the product of the instantaneous occurrence fre-
quencies of A �Ca� within the sublattices:

PAA � PA�PA� = PA
2 �1 − Q2� , �16�

where PA=0.5. The temperature of the order/disorder
R3̄c /R3̄ transition of 1475�25 K is close to the experimen-
tal value39 of 1398�25 K.
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FIG. 5. The free energies of mixing calculated with the thermo-
dynamic integration method.

0 0.2 0.4 0.6 0.8 1
Mole fraction of MgCO3

0

1

2

3

4

5

6

E
nr

op
y

of
m

ix
in

g,
J/

m
ol

/K

2500 K

500 K

Ideal mixing

FIG. 6. Configurational entropy isotherms derived from the
simulated enthalpies and free energies of mixing using Eq. �14�.
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FIG. 7. The temperature dependence of the long-range-order
parameter. Circles—the results of the present Monte Carlo simula-
tions. The width of the shaded rectangle shows the estimated uncer-
tainty of the experimental value of the transition temperature �Ref.
39�.
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VIII. PHASE DIAGRAM

The free energies of mixing were converted to a phase
diagram by comparing the free energy at each composition xi
along an isotherm to the free energy of a mechanical mixture
xj +xk. If there is a pair of compositions xj +xk that has lower
free energy, the solution with composition xi is unstable or
metastable. The two miscibility gaps were thus outlined. The
predicted shape of the phase diagram �Fig. 8� is the conse-
quence of the large negative excess enthalpy of the ordered

intermediate compound R3̄, dolomite. The predicted excess
enthalpy of −3.79 kJ /mol is in good agreement with the
experimental value,41 −5.74�0.25 kJ /mol, and with the re-
sult of a DFT calculation using the VASP code,
−3.66 kJ /mol.10 The calculated phase relations are in good
agreement with the experimental data.40,42

IX. DISCUSSION AND CONCLUSIONS

The predicted phase relations in the calcite-magnesite sys-
tem are very much consistent with those obtained in the pre-
vious simulation study23 based on the random sampling ap-
proach. This shows that the DDM is able to produce results
of comparable accuracy by sampling a much smaller set of
the supercell structures. Moreover, the intermediate dolomite

phase is predicted without any preliminary knowledge of the
type of ordering in the system. The correct asymmetry of
phase diagram is modeled solely based on the predicted pair-
wise interactions, without an addition of a configuration-
independent term. This means that the pairwise interactions,
which are responsible for ordering at intermediate composi-
tions, can be, in fact, predicted from the excess enthalpies of
the structures whose compositions approach the diluted lim-
its. Therefore, in cases where the interatomic interactions are
well described with the pairwise terms, the sampling of the
intermediate composition range is not necessary. Since the
structures with the double defects can be easily enumerated
and since the number of such structures is very limited, there
appears the possibility of predicting mixing properties of iso-
structural solid solutions solely on the basis of first-
principles calculations. The method appears to be especially
attractive for systems such as garnets, where the unit cell is
intrinsically large due to the presence of extra elements not
involved in mixing. The DDM permits then to select the
minimum number of the basis structures needed for the de-
velopment of the model of mixing.

The DDM approach is based on the assumption that
many-body interactions can be ignored. This condition seems
to be fulfilled in solid solutions in which interatomic inter-
actions are mediated by extra inactive structural units such as
CO3

2− in carbonates and SiO4
4− in silicates. The common

experience of mineralogists suggests that interatomic inter-
actions in such systems can be accurately described with
centrally symmetric cation-anion and angle-dependent
cation-anion-cation potentials.43–45 The specific cation-cation
interactions are modeled as purely electrostatic. Thus it is not
surprising that the pairwise ECI are sufficient for the descrip-
tion of the cation order in the carbonates. However, the
DDM might not work in alloys, where many-body interac-
tions cannot be neglected.46 For example, the study of Asato
et al.27 showed that the prediction of solubility limits in
Rd-Pd alloy is significantly improved when three- and four-
body interactions are taken into account. In such cases the
double-defect approach could be extended to include triple
or quadruple defects as it was outlined by Asato et al.27 The
number of such structures rapidly increases with the system
size, however.
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